
A Parallel Implementation on CUDA for Solving

2D Poisson’s Equation

Jorge Clouthier-Lopez1, Ricardo Barrón Fernández2, David Alberto Salas de León3

1,2 Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico
3 Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología,

Mexico

clouthier@gmail.com1, rbarron@cic.ipn.mx2, david.alberto.salas.de.leon@gmail.com3

Abstract. A parallel iterative Finite Difference (FD) method for solving

Poisson's equation on CUDA is implemented. The aim of this paper is to give a

detail explanation about the parallel solution of a Partial Differential Equation

(PDE). To examine the performance of the implemented iterative algorithm, a

number of experiments were tested. The performance shows the benefit of using

the implemented approach on GPU devices in terms of execution time.

Keywords: numerical schemes, partial differential equations, GPU, CUDA.

1 Introduction

In parallel computing many calculations are carried out simultaneously in one or in

different hardware environments. In this paper, we focus on the implementation of a

parallel numerical scheme over GPU NVIDIA devices, as well as on the detailed

explanation on the process of discretization and parallelization of a PDE. Parallel

computing is applied to solve large problems over High Performance Computing

(HPC). These large problems are mainly present in the research and forecasting of

weather, climate (e.g. simulations of extreme events where atmosphere-ocean

interactions have a great relevance, [1] and [2]), planetary sciences, and astronomy; as

well as in engineering (e.g. computer, civil, and mechanical), where the reduction in

computation time and the improvement in speedup is of fundamental importance.

 More and more research has focused on solving numerical models applying different

numerical schemes over HPC involving GPUs. With the latest advances on GPU cards,

new numerical models on self or hybrid hardware have arisen, e.g., MPI and CUDA

combined, e.g. [3]. This of fundamental importance since large scale problems,

represented by sets of PDEs and their parametrizations, e.g. source and sink terms that

cannot be resolved directly [4], require high resolutions to reproduce many

characteristics, that today are not possible. These large scale problems need substantial

computation time and memory to run on ordinary computers. This means that powerful

capabilities are required to obtain the numerical simulations in a reasonable period time.

 FD schemes have been employed in many numerical models that are applied in

different branches of geophysics. The content of this paper is based on the fundamentals

183

ISSN 1870-4069

Research in Computing Science 147(12), 2018pp. 183–191; rec. 2018-07-06; acc. 2018-08-23

that are being acquired to develop and implement a geophysical model with

applications on oceanography and climate for the Ph.D. research of the first author.

This model will be solved applying numerical hybrid methods based on its variational

formulation.

 The Poisson’s equation is present in many geophysical models. In the solution of this

equation, a numerical method is defined for a rectangular domain. As a result, a linear

system of equations is found. Then, the system of equations is implemented on a CUDA

parallel algorithm as a numerical linear algebra problem. Finally, the CUDA program

is executed and the results are analyzed.

 Numerical schemes based on FD are classical and straightforward ways to solve

numerically both PDEs and systems of PDEs. It is well known that FD schemes are

applied to solve systems of PDEs with many nodes on their structured domains [5]. The

resulting algebraic systems are solved using iterative methods due to the fact that direct

methods have disadvantages to calculate inverse matrices [6]. To reach higher accuracy

and faster convergence rate, modifications have been made over iterative implicit

methods, such as Jacobi, Gauss-Seidel and SOR, to have parallel algorithms, e.g. [7].

Moreover, pre-conditioning has also been applied for ill conditioned matrices that have

large condition numbers.

 In this paper we use the worth and simplicity that FD schemes have to solve the 2D

Poisson's equation in parallel as a numerical modeling problem using CUDA C. A two-

colored domain decomposition is applied in the FD discretization. The discrete

equation is solved applying the Gauss-Seidel iterative method.

 This paper is organized as follows. In Section 2, both the modeling problem and the

2D domain decomposition method are introduced. In Section 3, the parallel iterative

finite difference algorithm and its implementation are presented. In Section 4, a brief

overview about CUDA and the hardware architecture is provided. In Section 5, the

numerical experiments and discussions are given.

2 Modeling Problem and Discretization

The 2D Poisson's equation is solved in the rectangular region Ω=[0≤x≤m]X[0≤y≤m].

This PDE is written as:

𝜕2𝜑

𝜕𝑥2 +
𝜕2𝜑

𝜕𝑦2 = 𝑓(𝑥, 𝑦), (2.1)

with boundary conditions:

𝜑(𝑥, 𝑦) = 𝑔(𝑥, 𝑦), (𝑥, 𝑦) 𝜖 𝜕Ω. (2.2)

 The domain was divided uniformly into a number of shares with mesh grid size h,

where

𝑥𝑖 = 𝑖ℎ, and 𝑦𝑗 = 𝑗ℎ, (2.3)
𝑖, 𝑗 = 1,2,3, … , 𝑛

with

184

Jorge Clouthier-Lopez, Ricardo Barrón-Fernández, David-Alberto Salas-de-León

Research in Computing Science 147(12), 2018 ISSN 1870-4069

 Assuming a homogenous mesh, see Figure 1, each second derivative in (2.1) is

approximated with centered FD according to the following expressions:

𝜕2𝜑

𝜕𝑥2 ≈
𝜑(𝑥+ℎ,𝑦)−2𝜑(𝑥,𝑦)+𝜑(𝑥−ℎ,𝑦)

ℎ2 ,

(2.4)

𝜕2𝜑

𝜕𝑦2
≈

𝜑(𝑥,𝑦+ℎ)−2𝜑(𝑥,𝑦)+𝜑(𝑥,𝑦+ℎ)

ℎ2
 . (2.5)

 Substituting (2.4) and (2.5) into (2.1) we have

𝜑(𝑥 + ℎ, 𝑦) + 𝜑(𝑥 − ℎ, 𝑦) + 𝜑(𝑥, 𝑦 + ℎ) +

+𝜑(𝑥, 𝑦 − ℎ) − 4𝜑(𝑥, 𝑦) = ℎ2𝑓(𝑥, 𝑦).
(2.6)

 Writing (2.6) with subscripts

𝜑𝑖+1,𝑗 + 𝜑𝑖−1,𝑗 + 𝜑𝑖,𝑗+1 +

+𝜑𝑖,𝑗−1 − 4𝜑𝑖,𝑗 = ℎ2𝑓𝑖,𝑗 .
(2.7)

 Expression (2.7) is the discretized Poisson’s equation. This expression will result in

an algebraic system with 𝑛2 equations of the form

𝐴𝑋 = 𝑏. (2.8)

where 𝑏 is a known 𝑛2-vector (its elements are boundary conditions in (2.2)), 𝑋 is a

𝑛2-vector to be determined (its elements are the function 𝜑(𝑥, 𝑦) evaluated on the 𝑛2

nodes of the mesh), and 𝐴 is a 𝑛2x 𝑛2 matrix. 𝐴 has the following form

𝐴 = [
𝐶 𝐸
𝐹 𝐷

], (2.9)

with

𝐶 = 𝐷 and 𝐸 = 𝐹𝑇,
where

𝐶𝑘,𝑙 = −4 if 𝑘 = 𝑙,
and

𝐶𝑘,𝑙 = 0 if 𝑘 ≠ 𝑙.

In order to arrive at the system (2.8), the first 𝑛2/2 rows are obtained applying (2.7) on

all nodes where 𝑖 + 𝑗 is even and the following 𝑛2/2 rows are obtained applying (2.7)

on all nodes where 𝑖 + 𝑗 is odd.

Fig. 1. The homogeneous mesh and the dependency of node 𝑖, 𝑗 on the nearest ones.

185

A Parallel Implementation on CUDA for Solving 2D Poisson’s Equation

Research in Computing Science 147(12), 2018ISSN 1870-4069

3 The Iterative Algorithm

3.1 Sequential Gauss-Seidel

Before going directly to the parallel Gauss-Seidel (GS) method, we must first discuss

the sequential one. The GS is an improvement of the Jacobi algorithm. It can be written

in matrix and iterative notation. GS in the first form is expressed as

𝑋𝑘+1 = −(𝐷 + 𝐿)−1𝑈𝑋𝑘 + (𝐷 + 𝐿)−1𝑏, (3.1)

where 𝐿, 𝐷, and 𝑈 are the lower, diagonal, and upper-triangular parts of 𝐴, respectively.

 In the second form GS is written as

𝑋𝑖
𝑙 =

1

𝑎𝑖𝑖
(𝑏𝑖 − ∑ 𝑎𝑖,𝑗𝑋𝑗

𝑙
𝑗<𝑖 − ∑ 𝑎𝑖,𝑗𝑋𝑗

𝑘
𝑗>𝑖), (3.2)

where 𝑙 = 𝑘 + 1.

 In (3.2) GS corrects the 𝑖th component of the vector 𝑋𝑖
𝑘, where 𝑖= 1, 2, ··· 𝑛2. The

approximation solution is updated immediately after the new component is determined.

3.2 Parallel Gauss-Seidel

In (2.8) 𝐴 is a diagonal-dominant matrix, meaning that convergence will occur for the

algorithm in (3.2). In applying (3.2) directly to (2.8), the 𝑋𝑖
𝑘+1 for the first 𝑛2/2 rows

of the system of equations are calculated at the same time. Then the 𝑋𝑖
𝑘+1 for the

following 𝑛2/2 rows are calculated also at the same time. The reason is that the 𝑋𝑖
𝑘+1

for the last 𝑛2/2 rows depend on the previous 𝑋𝑖
𝑘+1, that were calculated in the first

𝑛2/2 rows of the system of equations. This procedure is repeated many times until a

desirable tolerance or approximation is reached. If the mesh ordering was not applied,

the parallel procedure would not be possible.

Kernel Pseudocode

1: Define indices for the corresponding block and thread

2: Assign the index value to the corresponding thread

3: Select the number and order of the rows of 𝐴 to work with

4: Determine index_i and index_f according to the balance of rows in the grid

5: for (from index_i to index_f)

6: Assign indices i and j to each node in the corresponding assigned

rows of A, where i+j is even, in order to not calculate zeroed

elements

7: Calculate 𝜑𝑖,𝑗 for the assigned rows, where i=j

8: Calculate the local error

9: end

10: synchronize

11: for (from index_i to index_f)

186

Jorge Clouthier-Lopez, Ricardo Barrón-Fernández, David-Alberto Salas-de-León

Research in Computing Science 147(12), 2018 ISSN 1870-4069

12: Assign indices i and j to each node in the corresponding assigned

rows of A, where i+j is odd, in order to not calculate zero elements

13: Calculate 𝜑𝑖,𝑗 for the assigned rows, where i=j

14: Calculate the local error

15: end

The CUDA kernel, which is executed in the device, is called from the host (CPU)

many times until the desirable tolerance is reached.

4 CUDA Programming and Hardware Architecture

CUDA is a general purpose parallel computing architecture that exploits the parallel

compute structure in NVIDIA GPUs to solve many complex computational problems.

CUDA C extends C by defining C functions that are executed in the device (in the

GPUs). Each function, also called a kernel function, is mapped to all the threads on the

device. All the threads in a GPU make up a grid. The GRID is divided into blocks.

Threads within a block can communicate with each other and synchronize together,

while threads from different blocks cannot share information between them. This means

that a kernel function is executed from all the threads in a grid. In other words, kernel

functions are copied to all threads to be executed simultaneously [8].

 GPUs were originally designed for graphics rendering. Due to their unique hardware

architecture, they have become a powerful and suitable tool for general purpose

computing. Each thread reads data in different memory locations when executing a

kernel function and has its own registers and local memory. Each block has the same

shared memory of its own and all threads in a grid can access the data in global memory.

Additionally, there are five kinds of memory: register, shared, local, global, and

constant [8].

5 Results

In this section, we evaluate experimentally the performance of the implemented

algorithm on CUDA C. In the experiments we used 10 different node densities or

problem sizes (36, 64, 100, 400, 1 600, 3 600, 6 400, 10 000, 40 000, and 160 00) for

the mesh of the domain.

 First, considering m=1, we solve (2.1) for four different cases where the numerical

solutions in the Figures 2 to 5 are obtained considering a problem size of 3 600. This

means that a higher value for the problem size would increase the resolution, while a

lower value would present a poor resolution in the depiction of the solution of the PDE,

as well a low quality of the numerical solution. Then we present the performance of the

implemented algorithm.

 The first three cases are solved taking into account homogeneous boundary

conditions (𝑥 = 0 𝑦 = 0, (𝑥, 𝑦) ∈ 𝜕Ω) and the last case is solved with

nonhomogeneous boundary conditions. For each case a different 𝑓(𝑥, 𝑦) in (2.1) is

used.

i) First case

𝑓(𝑥, 𝑦) = cos (2𝑥𝑦). (5.1)

187

A Parallel Implementation on CUDA for Solving 2D Poisson’s Equation

Research in Computing Science 147(12), 2018ISSN 1870-4069

In Figure 2 the graph of the solution of (2.1) in the selected domain is presented.

Fig. 2. Solution of Poisson’s equation with 𝑓(𝑥, 𝑦) = cos (2𝑥𝑦) and homogeneous boundary

conditions.

ii) Second case

𝑓(𝑥, 𝑦) = cos (2𝜋𝑥). (5.2)

The solution for (2.1) for this case is presented in Figure 3.

Fig. 3. Solution of Poisson’s equation with 𝑓(𝑥, 𝑦) = co s(2𝜋𝑥) and homogeneous boundary

conditions.

iii) Third case

𝑓(𝑥, 𝑦) = 0. (5.3)

The solution of (2.1) is presented in the following figure:

188

Jorge Clouthier-Lopez, Ricardo Barrón-Fernández, David-Alberto Salas-de-León

Research in Computing Science 147(12), 2018 ISSN 1870-4069

Fig. 4. Solution of Poisson’s equation with 𝑓(𝑥, 𝑦) = 0 and homogeneous boundary conditions.

iv) Fourth case

𝑓(𝑥, 𝑦) = 2𝑥2 + 2𝑦2 + 6𝑥, (5.4)

with the following boundary conditions:

𝑥3 + 𝑥2𝑦2 (𝑥, 𝑦) ∈ 𝜕Ω.

 The graph of the solution, in the selected domain, for this case is presented in the

following figure:

Fig. 5. Solution of Poisson’s equation with 𝑓(𝑥, 𝑦) = 2𝑥2 + 2𝑦2 + 6𝑥 and nonhomogeneous

boundary conditions equal to 𝑥3 + 𝑥2𝑦2.

 In Figure 6 the execution time, in seconds, of the parallel algorithm for different

problem sizes or node densities is presented. The sizes are obtained using 4, 9, 64, 100,

and 200 threads. The results show that the parallel algorithm performs better as the

domain resolution increases. In order to calculate the execution time, the fourth case is

used. The reason is that it considers non-homogeneous boundary conditions.

189

A Parallel Implementation on CUDA for Solving 2D Poisson’s Equation

Research in Computing Science 147(12), 2018ISSN 1870-4069

Fig. 6. The relationship between the execution time and the problem size.

 Besides the execution time, the speedup also is calculated, see Figure 7. It is

calculated selecting four different problem sizes: 3600, 10 000, 40 000 and 160 000

nodes. It can be seen that a better performance is obtained when large problems are

considered.

Fig. 7. The speedup for 3 600, 10 000, 40 000 and 160 000 nodes.

6 Conclusions

In this paper, we have implemented and analyzed a parallel implementation of the

Gauss-Seidel algorithm with two-colored grid ordering to solve the 2D Poisson’s

equation on a GPU device using CUDA. The implemented parallel algorithm presents

a good performance when the number of nodes of the mesh (discrete domain of the

PDE) increases. This means that the behavior of the resulting parallel scheme is

acceptable and good when the spatial resolution of the discrete domain is high.

 The parallel algorithm takes advantage of the iterations to solve the linear system

that results as a consequence of the discretization of the PDE.

190

Jorge Clouthier-Lopez, Ricardo Barrón-Fernández, David-Alberto Salas-de-León

Research in Computing Science 147(12), 2018 ISSN 1870-4069

Acknowledgements. The first and second author would like to thank to Instituto

Politécnico Nacional for the support provided for the development of this work through

the project SIP: 20181698

References

1. Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang, X. Y.,

Wang, W., Powers, J.: A description of the Advanced Research WRF Version 3, NCAR

Technical Note TN-475+STR, http.//www.mmm.ucar.edu/wrf/ (2008)

2. Regional Oceanic Modeling Syste: [Online]. Available: https://www.myroms.org/

(2018)

3. Salgueiro, D. V., Silvestre, N., Conde, D. A. C., Ferreira, R. M. L.: Implementation and

experimental benchmark of a two-layer CPU+ GPU hydrodynamics model. Geophysical

Research Abstracts, 20, EGU2018-18718 (2018)

4. Solano-Quinde, L., Gualan-Saavedra, R., Zuñiga-Prieto, M.: Multi-GPU implementation

of the Horizontal Diffusion method of the Weather Research and Forecast Model.

Proceedings of the 7th International Workshop on Programming Models and Applications

for Multicores and Manycores, pp 98-103, Barcelona, Spain (2016)

5. Vázquez-Báez, V., M., Rubio-Arellano, A. B., García-Toral, D., Rodríguez-Mora, I:

Model and Solution of Darcy's Law: Homogeneous and Inhomogeneous Media.

arXiv:1802.00890 [physics.geo-ph].

6. Al-Towaiq, M H.: Parallel Implementation of the Gauss-Seidel Algorithm on k-Ary n-

Cube Machine. Applied Mathematics, 4, pp 177–182 (2013)

7. Olszewski, L.: A Timing Comparison of the Conjugate Gradient and Gauss-Siedel

Parallel Algorithms in a One- Dimensional Flow Equation Using PVM. In: Proceedings

of the 33rd Annual on Southeast Regional Conference, Clemson, pp. 205–212 (1995)

8. NVIDIA, CUDA C Programming Guide. [Online]. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/ (2018)

191

A Parallel Implementation on CUDA for Solving 2D Poisson’s Equation

Research in Computing Science 147(12), 2018ISSN 1870-4069

http://docs.nvidia.com/cuda/cuda-c-programming-guide/

